Weak reverse Hölder inequality of weakly A-harmonic sensors and Hölder continuity of A-harmonic sensors
نویسندگان
چکیده
منابع مشابه
Weak reverse Hölder inequality of weakly A-harmonic sensors and Hölder continuity of A-harmonic sensors
* Correspondence: [email protected]. cn Department of Mathematics, Harbin Institute of Technology, Harbin 150001, PR China Abstract In this paper, we obtain the weak reverse Hölder inequality of weakly A-harmonic sensors and establish the Hölder continuity of A-harmonic sensors. Mathematics Subject Classification 2010: 58A10 · 35J60
متن کاملHölder continuity of a parametric variational inequality
In this paper, we study the Hölder continuity of solution mapping to a parametric variational inequality. At first, recalling a real-valued gap function of the problem, we discuss the Lipschitz continuity of the gap function. Then under the strong monotonicity, we establish the Hölder continuity of the single-valued solution mapping for the problem. Finally, we apply these resu...
متن کاملHölder continuity of solution maps to a parametric weak vector equilibrium problem
In this paper, by using a new concept of strong convexity, we obtain sufficient conditions for Holder continuity of the solution mapping for a parametric weak vector equilibrium problem in the case where the solution mapping is a general set-valued one. Without strong monotonicity assumptions, the Holder continuity for solution maps to parametric weak vector optimization problems is discussed.
متن کاملimproved regularity of harmonic map flows with hölder continuous energy ∗
For a smooth harmonic map flow u : M× [0, T ) → N with blow-up as t ↑ T , it has been asked ([6], [5], [7]) whether the weak limit u(T ) : M→ N is continuous. Recently, in [12], we showed that in general it need not be. Meanwhile, the energy function E(u(·)) : [0, T ) → R, being weakly positive, smooth and weakly decreasing, has a continuous extension to [0, T ]. Here we show that if this exten...
متن کاملOn Hölder-continuity of Oseledets subspaces
For Hölder cocycles over a Lipschitz base transformation, possibly noninvertible, we show that the subbundles given by the Oseledets Theorem are Höldercontinuous on compact sets of measure arbitrarily close to 1. The results extend to vector bundle automorphisms, as well as to the Kontsevich-Zorich cocycle over the Teichmüller flow on the moduli space of abelian differentials. Following a recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2011
ISSN: 1029-242X
DOI: 10.1186/1029-242x-2011-99